Determining the affinities of electrons OR: seeing semiclassics in action

Electron trajectories for photodetachment in an electric field.

Negatively charged ions are an interesting species, having managed to bind one more electron than charge neutrality grants them [for a recent review see T. Andersen: Atomic negative ions: structure, dynamics and collisions, Physics Reports 394 p. 157-313 (2004)]. The precise determination of the usually small binding energy is best done by shining a laser beam of known wave length on the ions and detect at which laser frequency the electron gets detached from the atomic core.

For some ions (oxygen, sulfur, or hydrogen fluoride and many more) the most precise values given at NIST are obtained by Christophe Blondel and collaborators with an ingenious apparatus based on an idea by Demkov, Kondratovich, and Ostrovskii in Pis’ma Zh. Eksp. Teor. Fiz. 34, 425 (1981) [JETP Lett. 34, 403 (1981)]: the photodetachment microscope. Here, in addition to the laser energy, the energy of the released electron is measured via a virtual double-slit experiment. The ions are placed in an electric field, which makes the electronic wave running against the field direction turn back and interfere with the wave train emitted in the field direction. The electric-field induced double-slit leads to the build up of a circular interference pattern of millimeter size (!) on the detector shown in the left figure (the animation was kindly provided by C. Blondel, W. Chaibi, C. Delsart, C. Drag, F. Goldfarb & S. Kröger, see their orginal paper The electron affinities of O, Si, and S revisited with the photodetachment microscope, Eur. Phys. J. D 33 (2005) 335-342).

Observed time-dependent emergence of the interference pattern in an electric field. Video shown with kind permission of C. Blondel et al. (see text for full credit)

I view this experiment as one of the best illustrations of how quantum and classical mechanics are related via the classical actions along trajectories. The two possible parabolic trajectories underlying the quantum mechanical interference pattern were described by Galileo Galilei in his Discourses & Mathematical Demonstrations Concerning Two New Sciences Pertaining to Mechanics & Local Motions in proposition 8: Le ampiezze de i tiri cacciati con l’istesso impeto, e per angoli egualmente mancanti, o eccedenti l’angolo semiretto, sono eguali. Ironically the “old-fashioned” parabolic motion was removed from the latest Gymnasium curriculum in Baden-Württemberg to make space for modern quantum physics.

At the low energies of the electrons, their paths are easily deflected by the magnetic field of the Earth and thus require either excellent shielding of the field or an active compensation, which was achieved recently by
Chaibi, Peláez, Blondel, Drag, and Delsart in Eur. Phys. J. D 58, 29-37 (2010). The new paper demonstrates nicely the focusing effect of the combined electric an magnetic fields, which Christian Bracher, John Delos, Manfred Kleber, and I have analyzed in detail and where one encounters some of the seven elementary catastrophies since the magnetic field allows one to select the number of interfering paths.

We have predicted similar fringes for the case of matter waves in the gravitational field around us originating from trapped Bose-Einstein condensates (BEC), but we are not aware of an experimental observation of similar clarity as in the case of the photodetachment microscope.

Mathematically, the very same Green’s function describes both phenomena, photodetachment and atomlasers. For me this universality demonstrates nicely how mathematical physics allows us to understand phenomena within a language suitable for so many applications.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s