# Time to find eigenvalues without diagonalization

Solving the stationary Schrödinger (H-E)Ψ=0 equation can in principle be reduced to solving a matrix equation. This eigenvalue problem requires to calculate matrix elements of the Hamiltonian with respect to a set of basis functions and to diagonalize the resulting matrix. In practice this time consuming diagonalization step is replaced by a recursive method, which yields the eigenfunctions for a specific eigenvalue.

A very different approach is followed by wavepacket methods. It is possible to propagate a wavepacket without determining the eigenfunctions beforehand. For a given Hamiltonian, we solve the time-dependent Schrödinger equation (i ∂t-H) Ψ=0 for an almost arbitrary initial state Ψ(t=0)  (initial value problem).

The reformulation of the determination of eigenstates as an initial value problem has a couple of computational advantages:

• results can be obtained for the whole range of energies represented by the wavepacket, whereas a recursive scheme yields only one eigenenergy
• the wavepacket motion yields direct insight into the pathways and allows us to develop an intuitive understanding of the transport choreography of a quantum system
• solving the time-dependent Schrödinger equation can be efficiently implemented using Graphics Processing Units (GPU), resulting in a large (> 20 fold) speedup compared to  CPU code The Zebra stripe pattern along the horizontal axis shows Aharonov-Bohm oscillations in the conductance of a half-circular nanodevice due to the changing magnetic flux. The vertical axis denotes the Fermi energy, which can be tuned experimentally. For details see our paper in Physical Review B.

The determination of transmissions requires now to calculate the Fourier transform of correlation functions <Ψ(t=0)|Ψ(t)>. This method has been pioneered by Prof. Eric J. Heller, Harvard University, and I have written an introductory article for the Latin American School of Physics 2010 (arxiv version).

Recently, Christoph Kreisbeck  has done a detailed calculations on the gate-voltage dependency of the conductance in Aharonov-Bohm nanodevices, taking full adventage of the simultaneous probing of a range of Fermi energies with one single wavepacket. A very clean experimental realization of the device was achieved by Sven Buchholz, Prof. Saskia Fischer, and Prof. Ulrich Kunze (RU Bochum), based on a semiconductor material grown by Dr. Dirk Reuter and Prof. Anreas Wieck (RU Bochum). The details, including a comparison of experimental and theoretical results shown in the left figure, are published in Physical Review B (arxiv version).

This site uses Akismet to reduce spam. Learn how your comment data is processed.