Solving the stationary Schrödinger (H-E)Ψ=0 equation can in principle be reduced to solving a matrix equation. This eigenvalue problem requires to calculate matrix elements of the Hamiltonian with respect to a set of basis functions and to diagonalize the resulting matrix. In practice this time consuming diagonalization step is replaced by a recursive method, which yields the eigenfunctions for a specific eigenvalue.

A very different approach is followed by wavepacket methods. It is possible to propagate a wavepacket without determining the eigenfunctions beforehand. For a given Hamiltonian, we solve the time-dependent Schrödinger equation (i ∂t-H) Ψ=0 for an almost arbitrary initial state Ψ(t=0) (initial value problem).

The reformulation of the determination of eigenstates as an initial value problem has a couple of computational advantages:

results can be obtained for the whole range of energies represented by the wavepacket, whereas a recursive scheme yields only one eigenenergy

the wavepacket motion yields direct insight into the pathways and allows us to develop an intuitive understanding of the transport choreography of a quantum system

solving the time-dependent Schrödinger equation can be efficiently implemented using Graphics Processing Units (GPU), resulting in a large (> 20 fold) speedup compared to CPU code

Recently, Christoph Kreisbeck has done a detailed calculations on the gate-voltage dependency of the conductance in Aharonov-Bohm nanodevices, taking full adventage of the simultaneous probing of a range of Fermi energies with one single wavepacket. A very clean experimental realization of the device was achieved by Sven Buchholz, Prof. Saskia Fischer, and Prof. Ulrich Kunze (RU Bochum), based on a semiconductor material grown by Dr. Dirk Reuter and Prof. Anreas Wieck (RU Bochum). The details, including a comparison of experimental and theoretical results shown in the left figure, are published in Physical Review B (arxiv version).