Day and night at comet 67P/Churyumov–Gerasimenko

Comet 67P/Churyumov–Gerasimenko has passed its nearest distance to the sun and its tail has been observed from earth. The comet emits dust and displays spectacular but short-lived outbreaks of localized jet activity. Very detailed OSIRIS pictures of the near-surface dust emission ready for stereo viewing have been posted by Brian May. The pictures also allow one to have a look at the prediction from the homogeneous dust emission model discussed previously. When you direct your attention in Brian May’s pictures to the background activity, you find very similar patterns as expected from the homogenous emission model. This activity is dimmer but steadily blowing off dust from the nucleus. Matthias Noack and I have generated and uploaded a visualization of the dust data obtained from the homogeneous activity model. In contrast to a localized activity models, collimated jets arise from a bundle of co-propagating dust trajectories emanating from concave surface areas. The underlying topographical shape model is a uniform triangle remesh of Mattias Malmer’s excellent work based on the release of Rosetta’s NAVCAM images via the Rosetta blog. The following video takes you on a flight around 67P/C-G, with 16 hours condensed into 90 sec.

The video is a side-by-side stereoscopic 3d rendering of 67P/Churyumov–Gerasimenko and the dust cloud, which can be viewed in 3d with  a simple cardboard viewer. While the observer is encircling the nucleus, day and night passes and different parts of the comet are illuminated.

Gas flow around 67P/C-G computed from a homogeneous activity model.
Gas flow around 67P/C-G computed from a homogeneous activity model. arxiv:1505.08041

In the homogeneous activity model each sunlit triangle emits dust with an initial velocity component along the surface normal. Then dust is additionally dragged along within the outwards streaming gas, which is also incorporated in the model. In contrast to compact dust particles, the gas molecules are diffusing also in lateral directions and thus gas is not helping to collimate jets by itself. The Rosetta mission with its long term observation program offers fascinating ways to perform a reality check on various models of cometary activity, which differ considerably in the underlying physics and assumptions about the original distribution and lift-off conditions of the dust eventually forming the beautiful tails of comets.

Homogeneous dust emission and jet structure near active cometary nuclei: the case of 67P/Churyumov-Gerasimenko by Tobias Kramer, Matthias Noack, Daniel Baum, Hans-Christian Hege, Eric J. Heller.

For red-cyan glasses try our 3d video on youtube (flash player required, watch out for the settings and 3d options, 1080p HD recommended).

Dusting off cometary surfaces: collimated jets despite a homogeneous emission pattern.

Effective Gravitational potential of the comet (including the centrifugal contribution), the maximal value of the potential (red) is about 0.46 N/m, the minimal value (blue) 0.31 N/m computed with the methods described in this post.
Effective Gravitational potential of the comet (including the centrifugal contribution), the maximal value of the potential (red) is about 0.46 N/m, the minimal value (blue) 0.31 N/m computed with the methods described in this post. The rotation period is taken to be 12.4043 h. Image computed with the OpenCL cosim code. Image (C) Tobias Kramer (CC-BY SA 3.0 IGO).

Knowledge of GPGPU techniques is helpful for rapid model building and testing of scientific ideas. For example, the beautiful pictures taken by the ESA/Rosetta spacecraft of comet 67P/Churyumov–Gerasimenko reveal jets of dust particles emitted from the comet. Wouldn’t it be nice to have a fast method to simulate thousands of dust particles around the comet and to find out if already the peculiar shape of this space-potato influences the dust-trajectories by its gravitational potential? At the Zuse-Institut in Berlin we joined forces between the distributed algorithm and visual data analysis groups to test this idea. But first an accurate shape model of the comet 67P C-G is required. As published in his blog, Mattias Malmer has done amazing work to extract a shape-model from the published navigation camera images.

  1. Starting from the shape model by Mattias Malmer, we obtain a re-meshed model with fewer triangles on the surface (we use about 20,000 triangles). The key-property of the new mesh is a homogeneous coverage of the cometary surface with almost equally sized triangle meshes. We don’t want better resolution and adaptive mesh sizes at areas with more complex features. Rather we are considering a homogeneous emission pattern without isolated activity regions. This is best modeled by mesh cells of equal area. Will this prescription yield nevertheless collimated dust jets? We’ll see…
  2. To compute the gravitational potential of such a surface we follow this nice article by JT Conway. The calculation later on stays in the rotating frame anchored to the comet, thus in addition the centrifugal and Coriolis forces need to be included.
  3. To accelerate the method, OpenCL comes to the rescue and lets one compute many trajectories in parallel. What is required are physical conditions for the starting positions of the dust as it flies off the surface. We put one dust-particle on the center of each triangle on the surface and set the initial velocity along the normal direction to typically 2 or 4 m/s. This ensures that most particles are able to escape and not fall back on the comet.
  4. To visualize the resulting point clouds of dust particles we have programmed an OpenGL visualization tool. We compute the rotation and sunlight direction on the comet to cast shadows and add activity profiles to the comet surface to mask out dust originating from the dark side of the comet.

This is what we get for May 3, 2015. The ESA/NAVCAM image is taken verbatim from the Rosetta/blog.

Comparison of homogeneous dust model with ESA/NAVCAM Rosetta images.
Comparison of homogeneous dust mode (left panel)l with ESA/NAVCAM Rosetta images. (C) Left panel: Tobias Kramer and Matthias Noack 2015. Right panel: (C) ESA/NAVCAM team CC BY-SA 3.0 IGO, link see text.

Read more about the physics and results in our arxiv article T. Kramer et al.: Homogeneous Dust Emission and Jet Structure near Active Cometary Nuclei: The Case of 67P/Churyumov-Gerasimenko (submitted for publication) and grab the code to compute your own dust trajectories with OpenCL at