Solving the interacting many-body Schrödinger equation is a hard problem. Even restricting the spatial domain to a two-dimensions plane does not lead to analytic solutions, the trouble-makers are the mutual particle-particle interactions. In the following we consider electrons in a quasi two-dimensional electron gas (2DEG), which are further confined either by a magnetic field or a harmonic oscillator external confinement potential. For two electrons, this problem is solvable for specific values of the Coulomb interaction due to a hidden symmetry in the Hamiltonian, see the review by A. Turbiner and our application to the two interacting electrons in a magnetic field.

For three and more electrons (to my knowledge) no analytical solutions are known. One standard computational approach is the configuration interaction (CI) method to diagonalize the Hamiltonian in a variational trial space of Slater-determinantal states. Each Slater determinant consists of products of single-particle orbitals. Due to computer resource constraints, only a certain number of Slater determinants can be included in the basis set. One possibility is to include only trial states up to certain excitation level of the non-interacting problem.

The usage of Slater-determinants as CI basis-set introduce severe distortions in the eigenenergy spectrum due to the intrusion of spurious states, as we will discuss next. Spurious states have been extensively analyzed in the few-body problems arising in nuclear physics but have rarely been mentioned in solid-state physics, where they do arise in quantum-dot systems. The basic defect of the Slater-determinantal CI method is that it brings along center-of-mass excitations. During the diagonalization, the center-of-mass excitations occur along with the Coulomb-interaction and lead to an inflated basis size and also with a loss of precision for the eigenenergies of the excited states. Increasing the basis set does not uniformly reduce the error across the spectrum, since the enlarged CI basis set brings along states of high center-of-mass excitations. The cut-off energy then restricts the remaining basis size for the relative part.

The cleaner and leaner way is to separate the center-of-mass excitations from the relative-coordinate excitations, since the Coulomb interaction only acts along the relative coordinates. In fact, the center-of-mass part can be split off and solved analytically in many cases. The construction of the relative-coordinate basis states requires group-theoretical methods and is carried out for four electrons here *Interacting electrons in a magnetic field in a center-of-mass free basis (arxiv:1410.4768)*. For three electrons, the importance of a spurious state free basis set was emphasized by R Laughlin and is a design principles behind the Laughlin wave function.