The Hayabusa 2 target asteroid (162173) Ryugu displays a strange diamond like shape, at least from the sunny side explored so far.
Time for me to reuse the code developed for comet 67P/Churyumov-Gerasimenko and to compute the gravitational potential (with added centrifugal term, assuming a 7 h rotation period). The rotation weakens the gravitational potential in the equator regions. Otherwise on the triangular faces the potential minima are close to the centers of the triangle.

The Rosetta spacecraft has come to rest on comet 67P/Churyumov-Gerasimenko. The comet is retreating from the sun, but the analysis of the scientific data is an ongoing endeavour with many discoveries yet to be made. As described before, the coma structure of 67P/C-G followed a surprisingly predictable pattern: dust is emitted from the entire sunlit surface and later in space forms intricate dust bundles and rays, directly reflecting the surface topography. The rotation of the nucleus leads to a bending of the dust trajectories which allows us to read of the velocity of the particles: around 3 m/s at distances 2-3 km from the surface. Our detailed prediction of the dust coma from May 2015 recently appeared in Advances in Physics: X, 3(1), 1404436, 2018 (open access), where we compare the model with Rosetta images such as these ones: (1, 2, 3).

The dust is propelled by the gas emitted from the surface by sublimation processes. It is a non-trivial task to back-out the surface ice distribution from the measured gas densities at Rosetta’s orbit via the COmetary Pressure Sensor (COPS), built by the ROSINA team (PI: Prof. Kathrin Altwegg, University of Bern, Switzerland). Using an analytical ansatz for the gas distribution, we managed to retrieve the “best-fit” distribution of the gas sources on the surface (T. Kramer, M. Läuter, M. Rubin, K. Altwegg: Seasonal changes of the volatile density in the coma and on the surface of comet 67P/Churyumov-GerasimenkoMonthly Notices of the Royal Astronomical Society, 469, S20, 2017).
Interestingly, the sources of higher gas emission are linked to reported short-lived outburst locations. A unified picture and modelling of gas and dust emission holds important clues about the composition of the cometary surface and we continue our investigation in that direction.

Have you ever thought of arXiv moderation in astro-ph being a problem? Did you experience a >5 months delay from submission of your pre-print to the arXiv to being publicly visible? Did this happen without any explanation or reaction from the arXiv moderators despite the same article being published after peer review in the Astrophysical Journal Letters?

Chances are high that your answer is no, to be precise the odds are 81404/81440=99.9558 percent that this did not happen to you. Lucky you! Now let me tell about the other 36/81440=0.0442043 percent. My computer based analysis of the last 80,000 deposited arxiv:astro-ph articles shows interesting results about the moderation patterns in astrophysics. To repeat the analysis

get the arXiv metadata, which is available (good!) from the arxiv itself. I used the excellent metha tools from Martin Czygan to download all metadata from the astro-ph and quant-ph sections since 5/2014.

parse the resulting 200 MB XML file, for instance with Mathematica. To get the delay from submission to arXiv publication, I took the time difference between the submission date stamp (oldest XMLElement[{http://purl.org/dc/elements/1.1/, date}) and the arXiv identifier, which encodes the year and month of public visibility.

Example: the article arxiv:1604.00876 went public in April 2016, 5 months after submission to the arXiv (November 5, 2015) and publication in the Astrophysical Journal Letters (there total processing time from submission to online publication, including peer review 1.5 months).

The analysis shows different patterns of moderation for the two sections I considered, quant-ph and astro-ph. It reveals problematic moderation effects in the arXiv astro-ph section:

Completely suitable articles are blocked, mostly peer reviewed and published for instance in the Astrophysical Journal, Astrophysical Journal Letters, Monthly Notices of the Royal Astronomical Society.

This might indicate a biased moderation toward specific persons and subjects. In contrast to scientific journals with their named editors, the arXiv moderation is opaque and anonymous. The metadata analysis shows that the moderation of the physics:astro-ph and physics:quant-ph use very different guidelines, with astro-ph having a strong bias to block valid contributions.

It makes the astro-ph arXiv less usable as a medium for rapid dissemination of cutting edge research via preprints.

This hurts careers, citation histories, and encourages plagiarism. New scientific findings are more easily plagiarized by other groups, since no arXiv time-stamped preprint establishes the precedence.

If we, the scientists, want a publicly funded arXiv we must ensure that it is operated according to scientific standards which serve the public. This excludes biased blocking of valid and publicly funded research.

Finally, the arXiv was not put in place to be a backup server for all journals, but rather to provide a space to share upcoming scientific publications without months of delay.

I will be happy to share comments I receive about similar cases. I am not talking about dubious articles or non-scientific theories, but about standard peer-reviewed contributions published in established physics journals, which should be on the astrophysical preprint arXiv.

Here follows the list of all articles which were delayed by more than 3 months from arxiv:physics/astro-ph (out of a total of 81,440 deposited articles) and if known where the peer reviewed article got published. I cannot exclude other factors besides moderation for the delay, but can definitely confirm incorrect moderation being the cause for the 2 cases I have experienced. Interestingly the same analysis on arxiv:physics/quant-ph did not reveal such a moderation bias of peer reviewed articles. This gives hope that the astrophysical section could recover and return to 100 percent flawless operation. Then the arXiv fulfils its own pledge on accountability and on good scientific practices (principles of the arXiv’s operation).

In general, any cometary activity is difficult to predict and many comets are known for sudden changes in brightness, break ups and simple disappearances. Fortunately, the Rosetta target comet 67P/Churyumov-Gerasiminko (67P/C-G) is much more amendable to theoretical predictions. The OSIRIS and NAVCAM images show light reflected from a highly structured dust coma within the space probe orbit (ca 20-150 km).

Is is possible to predict the dust coma and tail of comets?

Starting in 2014 we have been working on a dust forecast for 67P/C-G, see the previous blog entries. We had now the chance to check how well our predictions hold by comparing the model outcome to a image sequence from the OSIRIS camera during one rotation period of 67P/C-G on April 12, 2015, published by Vincent et al in A&A 587, A14 (2016) (arxiv version, there Fig. 13).

Our results appeared in Kramer & Noack, Astrophysical Journal Letters, 823, L11 (preprint, images). We obtain a surprisingly high correlation coefficient (average 80%, max 90%) between theory and observation, if we stick to the following minimal assumption model:

dust is emitted from the entire sunlit nucleus, not only from localized active areas. We refer to this as the “homogeneous activity model”

dust is entering space with a finite velocity (on average) along the surface normal. This implies that close to the surface a rapid acceleration takes place.

photographed “jets” are highly depending on the observing geometry:
if multiple concave areas align along the line of sight, a high imaged intensity results, but is not necessarily the result of a single main emission source. As an exemplary case, we analysed the brightest points in the Rosetta image taken on April 12, 2015, 12:12 and look at all contributing factors along the line of sight (yellow line) from the camera to the comet. The observed jet is actually resulting from multiple sources and in addition from contributions from all sunlit surface areas.

What are the implications of the theoretical model?

If dust is emitted from all sunlit areas of 67P/C-G, this implies a more homogeneous surface erosion of the illuminated nucleus and leaves less room for compositional heterogeneities. And finally: it makes the dust coma much more predictable, but still allows for additional (but unpredictable) spontaneous, 20-40 min outbreak events. Interestingly, a re-analysis of the comet Halley flyby by Crifo et al (Earth, Moon, and Planets 90 227-238 (2002)) also points to a more homogeneous emission pattern as compared to localized sources.

Comet 67P/Churyumov–Gerasimenko is past its perihelion and is currently visible in telescopes in the morning hours. The picture is taken from Tenerife by the Bradford robotic telescope, where I submitted the request. The tail is extending hundred thousands kilometers into space and consists of dust particles emitted from the cometary nucleus, which measures just a few kilometers. In a recent work just published in the Astrophysical Journal Letters (arxiv version), we have explored how dust, which does not make it into space, is whirling around the cometary nucleus. The model assumes that dust particles are emitted from the porous mantle and hover over the cometary surface for some time (<6h) and then fall back on the surface, delayed by the gas drag of gas molecules moving away from the nucleus. As in the predictions for the cometary coma discussed previously, we are sticking to a minimal-assumption model with a homogeneous surface activity of gas and dust emission.

The movements of 40,000 dust particles are tracked and the average dust transport within a volumetric grid with 300 m sized boxes is computed. Besides the gas-dust interaction, we do also incorporate the rotation of the comet, which leads to a directional transport.
The Rosetta mission dropped Philae over the small lobe of 67P/C-G and Philae took a sequence of approach images which reveal structures resembling wind-tails behind boulders on the comet. This allowed Mottola et al (Science 349.6247 (2015): aab0232) to derive information about the direction of impinging particles which hit the surface unless sheltered by the boulder. Our model predicts a dust-transport inline with the observed directions in the descent region, it will be interesting to see how wind-tails at other locations match with the prediction. We put an interactive 3d dust-stream model online to visualize the dust-flux predicted from the homogeneous surface model.

Comet 67P/Churyumov–Gerasimenko has passed its nearest distance to the sun and its tail has been observed from earth. The comet emits dust and displays spectacular but short-lived outbreaks of localized jet activity. Very detailed OSIRIS pictures of the near-surface dust emission ready for stereo viewing have been posted by Brian May. The pictures also allow one to have a look at the prediction from the homogeneous dust emission model discussed previously. When you direct your attention in Brian May’s pictures to the background activity, you find very similar patterns as expected from the homogenous emission model. This activity is dimmer but steadily blowing off dust from the nucleus. Matthias Noack and I have generated and uploaded a visualization of the dust data obtained from the homogeneous activity model. In contrast to a localized activity models, collimated jets arise from a bundle of co-propagating dust trajectories emanating from concave surface areas. The underlying topographical shape model is a uniform triangle remesh of Mattias Malmer’s excellent work based on the release of Rosetta’s NAVCAM images via the Rosetta blog. The following video takes you on a flight around 67P/C-G, with 16 hours condensed into 90 sec.

The video is a side-by-side stereoscopic 3d rendering of 67P/Churyumov–Gerasimenko and the dust cloud, which can be viewed in 3d with a simple cardboard viewer. While the observer is encircling the nucleus, day and night passes and different parts of the comet are illuminated.

In the homogeneous activity model each sunlit triangle emits dust with an initial velocity component along the surface normal. Then dust is additionally dragged along within the outwards streaming gas, which is also incorporated in the model. In contrast to compact dust particles, the gas molecules are diffusing also in lateral directions and thus gas is not helping to collimate jets by itself. The Rosetta mission with its long term observation program offers fascinating ways to perform a reality check on various models of cometary activity, which differ considerably in the underlying physics and assumptions about the original distribution and lift-off conditions of the dust eventually forming the beautiful tails of comets.

Knowledge of GPGPU techniques is helpful for rapid model building and testing of scientific ideas. For example, the beautiful pictures taken by the ESA/Rosetta spacecraft of comet 67P/Churyumov–Gerasimenko reveal jets of dust particles emitted from the comet. Wouldn’t it be nice to have a fast method to simulate thousands of dust particles around the comet and to find out if already the peculiar shape of this space-potato influences the dust-trajectories by its gravitational potential? At the Zuse-Institut in Berlin we joined forces between the distributed algorithm and visual data analysis groups to test this idea. But first an accurate shape model of the comet 67P C-G is required. As published in his blog, Mattias Malmer has done amazing work to extract a shape-model from the published navigation camera images.

Starting from the shape model by Mattias Malmer, we obtain a re-meshed model with fewer triangles on the surface (we use about 20,000 triangles). The key-property of the new mesh is a homogeneous coverage of the cometary surface with almost equally sized triangle meshes. We don’t want better resolution and adaptive mesh sizes at areas with more complex features. Rather we are considering a homogeneous emission pattern without isolated activity regions. This is best modeled by mesh cells of equal area. Will this prescription yield nevertheless collimated dust jets? We’ll see…

To compute the gravitational potential of such a surface we follow this nice article by JT Conway. The calculation later on stays in the rotating frame anchored to the comet, thus in addition the centrifugal and Coriolis forces need to be included.

To accelerate the method, OpenCL comes to the rescue and lets one compute many trajectories in parallel. What is required are physical conditions for the starting positions of the dust as it flies off the surface. We put one dust-particle on the center of each triangle on the surface and set the initial velocity along the normal direction to typically 2 or 4 m/s. This ensures that most particles are able to escape and not fall back on the comet.

To visualize the resulting point clouds of dust particles we have programmed an OpenGL visualization tool. We compute the rotation and sunlight direction on the comet to cast shadows and add activity profiles to the comet surface to mask out dust originating from the dark side of the comet.

This is what we get for May 3, 2015. The ESA/NAVCAM image is taken verbatim from the Rosetta/blog.

Read more about the physics and results in our arxiv article T. Kramer et al.: Homogeneous Dust Emission and Jet Structure near Active Cometary Nuclei: The Case of 67P/Churyumov-Gerasimenko (submitted for publication) and grab the code to compute your own dust trajectories with OpenCL at github.org/noma/covis

The recent experimental realization observation of giant Rydberg molecules by Bendkowsky, Butscher, Nipper, Shaffer, Löw, Pfau [theoretically studied by Greene and coworkers, see for example Phys. Rev. Lett. 85, 2458 (2000)] shows Coulombic forces at work at large atomic distances to form a fragile molecule. The simplest approach to Rydberg molecules employs the Fermi contact potential (also called zero range potential), where the Coulomb Green’s function plays a central role. The quantum mechanical expression for the Coulomb Green’s function was derived in position space by Hostler and in momentum space by Schwinger. The quantum mechanical expression does not provide immediate insights into the peculiar nodal structure shown on the left side and thus it is time again to look for a semiclassical interpretation, which requires to translate an astronomical theorem into the Schrödinger world, one of my favorite topics.

Johann Heinrich Lambert was a true “Universalgelehrter”, exchanging letters with Kant about philosophy, devising a new color pyramid, proving that π is an irrational number, and doing physics. His career did not proceed without difficulties since he had to educate himself after working hours in his father’s tailor shop. After a long journey Lambert ended up in Berlin at the academy (and Euler choose to “escape” to St. Petersburg).

Lambert followed Kepler’s footsteps and tackled one of the most challenging problems of the time: the determination of celestial orbits from observations. In 1761 Lambert did solve the problem of orbit determination from two positions measurements. Lambert’s Theorem is a cornerstone of astronavigation (see for example the determination of Sputnik’s orbit using radar range measurements and Lambert’s theorem). Orbit determination from angular information alone (without known distances) is another problem and requires more observations.

Lambert poses the following question [Insigniores orbitae cometarum proprietates (Augsburg, 1761), p. 120, Lemma XXV, Problema XL]: Data longitudine axis maioris & situ foci F nec non situ punctorum N, M, construere ellipsin [Given the length of the semi-major axis, the location of one focal point, the points N,M, construct the two possible elliptical orbits connecting both points.]

Lambert finds the two elliptic orbits [Fig. XXI] with an ingenious construction: he maps the rather complicated two-dimensional problem to the fictitious motion along a degenerate linear ellipse. Some physicists may know how to relate the three-dimensional Kepler problem to a four-dimensional oscillator via the Kustaanheimo–Stiefel transformation [see for example The harmonic oscillator in modern physics by Moshinsky and Smirnov]. But Lambert’s quite different procedure has its advantages for constructing the semiclassical Coulomb Green’s function, as we will see in a moment.

Shown are two ellipses with the same lengths of the semimajor axes 1/2 A_{1}B_{1}=1/2 A_{2} B_{2} and a common focus located at F. The centers of the two ellipses are denoted by C_{1} and C_{2}. Lambert’s lemma allows to relate the motion from N to M on both ellipses to a common collinear motion on the degenerate linear ellipse Fb, where the points n and m are chosen such that the time of flight (TOF) along nm equals the TOF
along the elliptical arc NM on the first ellipse. On the second ellipse the TOF along the arc NB_{2}M equals the TOF along nbm. The points n and m are found by marking the point G halfway between N and M. Then the major axis Fb=A_{1} B_{1}=A_{2} B_{2} of the linear ellipse is drawn starting at F and running through G. On this line the point g is placed at the distance Fg=1/2(FN+FM). Finally n and m are given by the intersection points of a circle around g with radius GN=GM. This construction shows that the sum of the lengths of the shaded triangle α_{±}=FN + FM ± NM is equal to α_{±}=fn+ fm ± nm. The travel time depends only on the distances entering α_{±}, and all calculations of the travel times etc. are given by one-dimensional integrations along the ficticious linear ellipse.

Lambert did find all the four possible trajectories from N to M which have the same energy (=semimajor axis a), regardless of their eccentricity (=angular momentum). The elimination of the angular momentum from Kepler’s equation is a tremendous achievement and the expression for the action is converted from Kepler’s form

[Kepler] W(r,r‘;E)=√μ a K_{c} [ξ + ε sin(ξ) – ξ’ – ε sin(ξ’)], with eccentricity ε, eccentric anomaly ξ to

[Lambert] W(r,r‘;E)=√μ a K_{c}[γ + sin(γ) – δ – sin(δ)], with
sin^{2}(γ/2)=(r+r’+ |r‘-r|)/(4a) and sin^{2}(δ/2)=(r+r’- |r‘-r|)/(4a).

The derivation is also discussed in detail in our paper [Kanellopoulos, Kleber, Kramer: Use of Lambert’s Theorem for the n-Dimensional Coulomb Problem Phys. Rev. A, 80, 012101 (2009), free arxiv version here]. The Coulomb problem of the hydrogen atom is equivalent to the gravitational Kepler problem, since both are subject to a 1/r potential. Some readers might have seen the equation for the action in Gutzwiller’s nice book Chaos in classical and quantum mechanics, eq. (1.14). It is worthwhile to point out that the series solution given by Lambert (and Gutzwiller) for the time of flight can be summed up easily and is denoted today by an inverse sine function (for hyperbolic motion a hyperbolic sine, a function later introduced by Riccati and Lambert). Again, the key-point is the introduction of the linear ficticious ellipse by Lambert which avoids integrating along elliptical arcs.

The surprising conclusion: the nodal pattern of the hydrogen atom can be viewed as resulting from a double-slit interference along two principal ellipses. The interference determines the eigenenergies and the eigenstates. Even the notorious difficult-to-calculate van Vleck-Pauli-Morette (VVPM) determinant can be expressed in short closed form with the help of Lambert’s theorem and our result works even in higher dimensions. The analytic form of the action and the VVPM determinant becomes essential for our continuation of the classical action into the forbidden region, which corresponds to a tunneling process, see the last part of our paper.

Lambert is definitely a very fascinating person. Wouldn’t it be nice to discuss with him about philosophy, life, and science?